Using Machine Learning and Feature Selection for Alfalfa Yield Prediction
نویسندگان
چکیده
منابع مشابه
Feature extraction for image selection using machine learning
During flights with manned or unmanned aircraft, continuous recording can result in a very high number of images to analyze and evaluate. To simplify image analysis and to minimize data link usage, appropriate images should be suggested for transfer and further analysis. This thesis investigates features used for selection of images worthy of further analysis using machine learning. The selecti...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملCorrelation-based Feature Selection for Machine Learning
A central problem in machine learning is identifying a representative set of features from which to construct a classification model for a particular task. This thesis addresses the problem of feature selection for machine learning through a correlation based approach. The central hypothesis is that good feature sets contain features that are highly correlated with the class, yet uncorrelated w...
متن کاملUser-Oriented Feature Selection for Machine Learning
The effectiveness of any machine learning algorithm depends, to a large extent, on the selection of a good subset of features or attributes. Most existing methods use the syntactic or statistical information of the data, relying on a heuristic criterion to select features. In this paper, we investigate an alternative less-studied approach called user-oriented feature selection by exploiting the...
متن کاملImproving Feature Selection Techniques for Machine Learning
As a commonly used technique in data preprocessing for machine learning, feature selection identifies important features and removes irrelevant, redundant or noise features to reduce the dimensionality of feature space. It improves efficiency, accuracy and comprehensibility of the models built by learning algorithms. Feature selection techniques have been widely employed in a variety of applica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AI
سال: 2021
ISSN: 2673-2688
DOI: 10.3390/ai2010006